Design considerations for tension leg platform wind turbines
نویسندگان
چکیده
منابع مشابه
Floating Offshore Wind Turbines: Tension Leg Platform and Taught Leg Buoy Concepts Suppoting 3-5 Mw Wind Turbines
The development is presented of two low weight, motion resistant stiff floating wind turbine concepts for deployment in water depths ranging from 30 to several hundred meters in seastates with wave heights up to 30 meters supporting 3-5 MW onshore wind turbines. The floating wind turbines may be fully assembled at a coastal facility in their upright position prior to being towed to the offshore...
متن کاملTension Leg Platform Design Optimization for Vortex Induced Vibration
Tension Leg Platform design is a challenging and popular area of research in the offshore oil industry. In order to compete in the International Student Offshore Design Competition (ISODC), a Tension Leg Platform (TLP) was designed. Our TLP design addresses five fundamental areas of technical competency (General Arrangement and Overall Hull/System Design, Weight, Buoyancy and Stability, Global ...
متن کاملDesign Mining Interacting Wind Turbines
An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assu...
متن کاملRotor Design for Diffuser Augmented Wind Turbines
Diffuser augmented wind turbines (DAWTs) can increase mass flow through the rotor substantially, but have often failed to fulfill expectations. We address high-performance diffusers, and investigate the design requirements for a DAWT rotor to efficiently convert the available energy to shaft energy. Several factors can induce wake stall scenarios causing significant energy loss. The causality b...
متن کاملComprehensive Parametric Study for Design Improvement of a Low-Speed AFPMSG for Small Scale Wind-Turbines
In this paper, a comprehensive parametric analysis for an axial-flux permanent magnet synchronous generator (AFPMSG), designed to operate in a small-scale wind-power applications, is presented, and the condition for maximum efficiency, minimum weight and minimum cost is deduced. Then a Computer-Aided Design (CAD) procedure based on the results of parametric study is proposed. Matching between t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Marine Structures
سال: 2012
ISSN: 0951-8339
DOI: 10.1016/j.marstruc.2012.09.001